### The Carbon QS

## **Digitising Sustainability** Monitising Carbon







#### **Sustainability Workshop**

#### Part 1

Archie, Simon Roger

- The Sustainability Team
- What is driving Sustainability
- The Starting Line
- Carbon Literacy
- Counting Carbon
- Creating Value from Climate Risk





This is digital and carbon quantity surveying on a global level



From our offices in Denmark and Ireland



**KOSMOS** are changing how the construction industry is <u>measured</u>, <u>analysed</u> and <u>managed</u>

1,452,197 m2 and counting

#### Value Driven Sustainability Management:

"Integrated collaborative approach to designing to carbon budgets, with continuous follow up & cost control."





#### Meet the team



Phil Lucas Senior MEP Building Services Specialist



**Craig Cooper** Sustainability QS, BREEAM AP



**Simon top Laustsen** Sustainability Engineer DNGB



LEED/BREEAM/HPI

Specialist

**Roger Barclay** Commercial Manager Whole Life Carbon QS



#### What we do

- Cost
- Commercial
- Carbon
- Digital





## Agenda

1. Understanding Carbon in Buildings

2. Challenges in Counting Carbon  Standardisation and Data

4. Learning from International Practice

#### Drivers of Decarbonisation



CHAPTER 01

## Understanding Carbon in Buildings

CHAPTER 01

## Understanding Carbon in Buildings



#### What is Whole Building LCA? (wb-LCA)

#### Whole building life-cycle assessment

An assessment targeted at understanding the life-cycle environmental impacts of materials used in constructing a building. An Assessment that examining the environmental impacts that stem from the life cycle of a product, process, or service.

 Providing climate impact information for decisionmaking related to the design, construction, operation, maintenance, and eventual demolition or reuse of a building. Why is it Important?

Buildings are responsible for approximately 40% of global greenhouse gas emissions.



By understanding the carbon impact of buildings, we can identify areas where we can reduce emissions and make buildings more sustainable.



Whole building life cycle assessment (wbLCA) is one method that can help us understand the environmental impacts of buildings and identify areas where we can improve their sustainability.

#### **Defining Carbon**



#### Whole Life Carbon

- **Up Stream** Embodied Carbon
  - **Down Stream Carbon** Maintenance and Replacement
- In Use Operational Carbon









#### Lifecycle Assessment



----- Upfront Carbon

----- Embodied Carbon



#### CHAPTER 02

## Challenges in Counting Carbon

CHAPTER 02

## Challenges in Counting Carbon





















#### **The Need for Accurate Measurement**

#### Trust and reliability through accuracy and consistency of LCA

 Data quality
Define owner and levels of detail. Data availability Some detail not available at this stage.

System boundaries
Consistency in
define what is
included and
excluded from the
study.

Goalsetting Function of the Carbon Calculation may not have been clearly defined.

#### CHALLENGES WITH WHOLE BUILDING LIFE CYCLE ASSESSMENT (wbCLA)

**Accuracy and Consistency** 



Time Cost of detailed analysis.

Data collection, escalating level of detail with project progress inputs - raw materials, products energy. Carbon coefficients outputs – reporting for different use cases – LEED, ESG, etc

#### **Accuracy and Consistency**



Assumptions

Use of 'product specific data' vs National Average data? National database of materials being built by IGBC Shortage of Environmental Product Declarations (EPD) Suppliers using one EPD for multiple products

#### CHAPTER 03

## Standardisation and

Data

CHAPTER 03

# Standardisation and Data


#### Where BIM Comes in Handy!

#### Information structures to streamline assessment process

Measure once - BIM can automate quantification and build a material inventory. Digitalise - Using digital design tools -BIM, to automate the identification of Carbon hotspots.

Future BIM - LCA development will focus on highlighting data gaps & lack of quality in models and procedural errors.

#### **STANDARDISATION**

#### **The Rules**

#### Does this look familiar?

**EN 15978:2011** Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method

#### **ISO 14040:2006** Environmental management Life cycle assessment Principles and framework

#### ISO 14064-1:2018

Greenhouse gases — guidance at the organization level for quantification and reporting of greenhouse gas emissions

#### ISO 14025:2006

Environmental labels and declarations Type III environmental declarations Principles and procedures

#### ISO 15686-5:2017 Buildings and constructed assets Service life planning



#### CHAPTER 04

# Learning from International Practice

CHAPTER 04

# Learning from International Practice

#### Simplification



## Learning from Denmark Timeline





#### Stage 2B – Detailed Design

| Data Quality        | Building Elements |        |          |     |       |                           |
|---------------------|-------------------|--------|----------|-----|-------|---------------------------|
|                     | Structure         | Facade | Interior | MEP | Stuff | Site                      |
| Products A1-A3      | 391               | 59     | 51       | 120 | 0     |                           |
| Construction A4-A5  | 11                | 1      | 2        | 1   | 0     | 30                        |
| In Use B1-A5        | 0                 | 59     | 53       | 240 | 0     |                           |
| In Use Energy B6-B7 |                   |        |          | 620 |       |                           |
| End of Life C       | 50                | 6      | 5        | 13  | 8     |                           |
| Emissions           | 408               | 120    | 107      | 981 | 8     | <b>1,647</b><br>kgC0²e/m² |

High Quality data 5 retrospectivity Stage 4– Construction Lower Quality 2 data Data Quality **Building Elements** representivity Structure Interior MEP Stuff Site Facade 2 2 2 5 3 4 **Products A1-A3** Construction A4-A5 2 2 2 3 4 4 2 In Use B1-A5 3 3 3 4 2 In Use Energy B6-B7 N?A Score 2 2 2 End of Life C 2 2 4 66% **Emissions** 623 44 352 620 8 1,647



## The intrinsic Link between carbon & Cost

Simply Taking our traditional cost management approach and we're just managing carbon in the same way.

Quantum, unit price for cost, unit price for carbon



Kosmos

## Applying and ESG lens



Investment Risk

**Project Delivery** 

Sustainable Design Solutions



#### Overview



#### Client journey

#### Roadmap

- Carbon risk assessment
- Goalsetting business case
- Climate neutral Pathway
- Budget Carbon

#### **Evaluate**

- ESG / GRESB, EU taxonomy
- Calculate Value at Risk
- LCA calculation
- evaluate options

## Track

- Cost model
- Carbon budget
- Viability of measures
- Internal Carbon price

Delivery

# Turning high level objectives into real world actions

## International Cost Management Standard ICMS 3

# Benefits of Standardised Reporting on project costs and carbon emissions:

- Transparency through cost data classification
- Consistency in reporting and tracking
- Connected data to merge Carbon & Cost
- Easier comparison between Alternatives
- Better Access to supply chain and digital data libraries



## Application to projects



#### Timeline



#### Tightening targets for carbon and climate performance



# ICMS3

International Cost Management Standard (ICMS)

Digital requirements in the Capital Works from January 2024

ICMS 3 creates an intrinsic link between Carbon & Cost

Measures, tracks and reporting on operational and embodied carbon

Enables consistent reporting across the National Development Plan of:

+ Initial Costs + Life cycle costs + Life cycle Carbon



## Economic Appraisal 'Value for Money'

Public Spending Code (PSC updated in 2019)

- Improved Accuracy of cost estimation and forecasting.
- Include Risk identification and risk management
- Requires external evaluation of projects over €20m at six key project lifecycle stages,
- Now includes parameters around lifecycle Carbon

## Economic Appraisal Shadow Price of Carbon

- Used to monetise the value of Carbon Emissions from Greenhouse Gases
- Future projects emissions must be included, and index linked to future hypothetical carbon prices

Link : Section 6 of Central Technical References and Economic Appraisal Parameters.



#### Price of Carbon



## **Project Delivery**



## Managing uncertainty and data gaps

#### Granularity



#### Design Stages



## Managing Carbon and Cost Budgets NECX29 Performance Clauses



#### Identifying Carbon Creep



KOSMOS

Concept

Developed design

Detailed Design

Construction

#### Optioneering

## Reconcile cost-benefit trade-offs and Carbon reduction/energy Efficiency savings

- Option A CLT Deck with Screed
- Option B CLT Deck with P/B soffit
- Option C Precast with 30% GGBS
- Option D Base case (Precast)

Cost optimality graph plotting proposed measures to identify the optimal solution





#### CHAPTER 03

# Reporting Format

CHAPTER 03

**Reporting Format** 





#### Stage 4 - Construction



representivity

Lower Quality data representivity

2

| Data Quality        | Building Elements |        |          |     |       |       |   |
|---------------------|-------------------|--------|----------|-----|-------|-------|---|
|                     | Structure         | Facade | Interior | МЕР | Stuff | Site  |   |
| Products A1-A3      | 5                 | 3      | 2        | 2   | 2     | 4     |   |
| Construction A4-A5  | 4                 | 4      | 2        | 2   | 2     | 3     |   |
| In Use B1-A5        | 4                 | 3      | 2        | 2   | 3     | 3     |   |
| In Use Energy B6-B7 |                   |        |          | N?A |       |       |   |
| End of Life C       | 4                 | 2      | 2        | 2   | 2     | 2     | S |
| Emissions           | 623               | 44     | 352      | 620 | 8     | 1,647 |   |

| Carl | oon Cost              | Cost plan of works                     | Carbon plan of works                                                 |
|------|-----------------------|----------------------------------------|----------------------------------------------------------------------|
| RIBA | A Cost Planning Stage | Cost Planning Tasks                    | WLC Assessment Tasks                                                 |
| 1    | Feasibility           | Initial Cost Plan                      | Set carbon reduction targets                                         |
| 2    | Brief                 | Establishing budgetary constraints     | Identifying carbon reduction opportunities                           |
| 3    | Concept               | Preparing initial cost estimates       | Assessing the carbon impact of design options                        |
| 4    | Development Design    | Preparing detailed cost plan           | Refining the design to minimize carbons emissions                    |
| 5    | Technical Design      | Schedule of work                       | Specifying low-carbon materials and systems                          |
| 6    | Construction          | Monitor progress against the cost plan | Monitoring construction activities to minimize carbon emissions      |
| 7    | Handover              | Reconcile final account                | Ensure carbon performance meets expectations                         |
| 8    | Use                   | Monitoring operational use             | Monitoring performance and identifying opportunities for improvement |

#### **Transition Risk- Asset Stranding**


#### **Carbon Intensity**





#### **Carbon Intensity**



#### **Carbon Intensity**



#### Marginal Abatement Cost Curve



# 05 Infrastructure Guidelines

Project Ireland 2040

Replaces the Public Spending Code requirements for capital expenditure

Infrastructure Guidelines set out the value for money calculations

Applies to projects over < € 20m value, With additional requirements for 'Major Projects' defined as over >€200m

069538a6-4474-4d5e-8821-43a0852bfd0b.pdf (www.gov.ie)



#### Infrastructure Guidelines

December 2023

Tionscadal Éireann Project Ireland 2040

## BIM requirements in Capital Works Framework January 2024

International Cost Management Standards (ICMS3). Cost and carbon reporting templates are mandated for use from the 1st January 2024 in the National Development Plan 2024-2040 (NDP).





# Delivery











Event Website Program Past event teaser

# Case Study - Henning Larsen tops Danish sewage works with park

Henning Larsen tops Danish sewage works with park (dezeen.com)



KOSMOS

UN @ environment programme

finance

M-h

191

March 2022

CRREM

Managing Transition Risk in Real Estate:

Aligning to the Paris Climate Accord

#### Lessons from Denmark

**Risk Modelling** 

- Use Data to Quantify Carbon Transition Risk.
- Manage uncertainty by allocating contingency to climate related targets
- Generate and update an Opportunity Register
- Adjust contingency budget dynamic risk scoring
- Track risk through project and use opportunities to balance risk.



#### Lessons from Denmark



#### Prioritisation

Level playing field

Value for money

Targets

Risk

- 1. Detailed Climate criteria in Tenders and weighted to reflect urgency
- 2. Consistency creating a detailed evaluation system to measure on a like for like basis.
- 3. Value focused approach that can consider cost, practicality and carbon
- Metrics based approach to communicate to carbon and climate targets for each project using a national tool (LCCbyk)
- 5. Consider a Risk based approach to climate targets

## Valuing Carbon in Infrastructure Projects



## Valuing Carbon in Infrastructure Projects



### **Economic Appraisal** – Business case for Carbon emission reduction





 $\mathbb{C}$ 

Establish a <u>base case</u> Do-nothing Scenario

Identify <u>Measures</u> that can Reduce Carbon emissions

Factor longer-term variables electricity, carbon and time **escalation costs**.

Monetise carbon emissions With 10-30 year projections.

Cost benefit, net value presented in present tense

Do minimum Scenario, current default strategy

Explore climate risk hot-spots and opportunities

- + alternative energy technologies,
- + lower embodied carbon materials
- + i.e. GGBS in concrete mix

Include the time cost of finance and discount rate of 4%

2019 projected price of carbon. replaced by 2024 Social Cost of Carbon. €100 per ton €280 per ton

Full Lifecycle cost of a measured over 30 years including O+M and future hypothetical cost of carbon established

#### **Economic Appraisal**

Business case for Carbon emission reduction

Cost benefit, net present value



# Key Takeaways

- 1. Align ambition & capability
- 2. Integrate Cost & Carbon budgets
- 3. Risk Assessment to manage uncertainty
- 4. Communicate targets to contractors
- 5. Track with NRM2 & ICMS3



Archie O'Donnell – 07 September 2023

# 

www.KOSMOS.company



Join us on Linkedin (Remember to click on "Follow us")



# KOSMOS

www.KOSMOS.company