

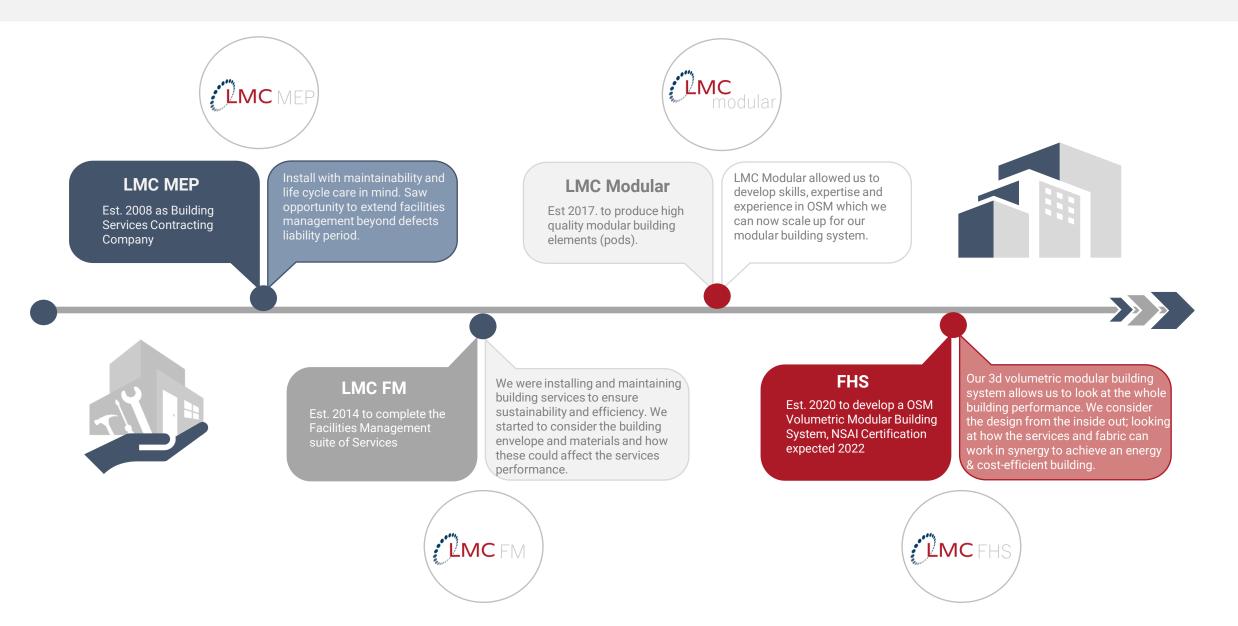
EDUCATING THE CLIENT FOR OSM

LMC MODULAR GROUP - OFF-SITE MANUFACTURING

1 5 S E P T 2 0 2 2

modular

USINESS


1. LMC MODULAR GROUP


LMC COMPANY GROUP JOURNEY

PLAN . DEVELOP . DELIVER . OPERATE . MAINTAIN

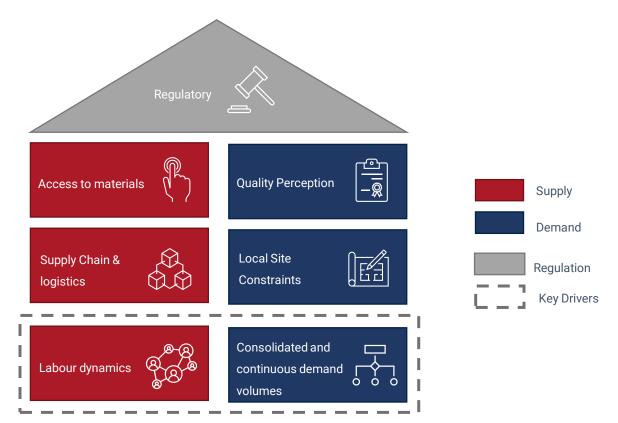
2. OSM IN THE IRISH HOUSING SECTOR

THE DRIVERS FOR DISRUPTION

THE CONSTRUCTION SECTOR IS POISED TO ACCEPT OSM AS THE FUTURE

DEMAND DRIVERS

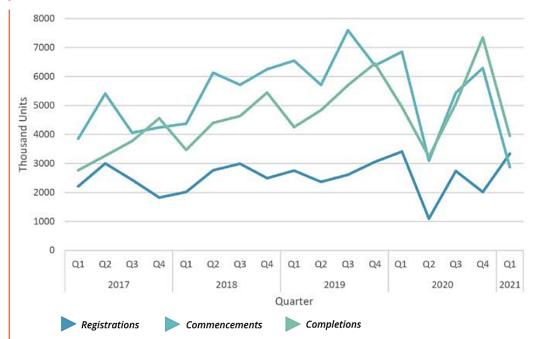
A talent gap, ageing workforce coupled with a deepening housing crisis, with the Governments Housing for All Strategy as a backdrop, are the biggest predictors of where OSM can gain market share in the Irish context.


THE BENEFITS

Offsite Manufacturing has been shown to reduce construction programs by up to 50%.

20%

In the right environment and trade-offs, it can cut costs by 20% and at the end of the day money is always the biggest driver. MARKET READINESS


According to Mc Kinsey & Co., seven factors determine the attractiveness of a market for Modular.

THE HOUSING CRISIS – THE IRISH CONTEXT

HOUSING OUR GROWING POPULATION

AFFORDABILITY

- Average earners cannot afford homes with increasing construction and development costs.
- The gap is widening in many parts of Ireland between the cost of delivery and purchaser's ability to meet lenders requirements.

HOUSEBUILDING ACTIVITY BY QUARTER 2017-2021 (Q1)

SUPPLY

- There has been consistent under-investment in private and social housing and the failure of supply to keep pace with demand since the industry returned to growth in 2013.
- Less than 10,000 new homes delivered in 2016, rising to 21,138 new dwelling in 2019.
- Due to Covid 19 house completions in 2020 were approx. 21,000 homes.
- Supply of new homes for 2021 will be approx. 18,000 homes just (50%) of the required 36,000 homes needed.

"Now is the time to adopt innovative, sensible, and sustainable approaches to delivering construction in Ireland. The prize could be an additional €1.85bn economic uplift and 1,200 jobs for every €1bn invested in construction in addition to the delivery of essential housing and infrastructure that our society, environment and economy requires."

Frank Kelly, CIF President

HOUSING FOR ALL

A NEW HOUSING PLAN FOR IRELAND

DHLGH identified , in 'Housing for All', a housing need of **33,000** units for annum over the next **10 years**, rising to **40,000 by 2030**.

The target is **312,000** additional housing units by **2030**. This will include: 90,000 social housing units, 36,000 homes for affordable purchase, 18,000 cost-rental homes and 170,000 private homes.

In order to reach the above targets the stats intends to spend €4bn spent a year, or **€40bn over ten years**, on various State interventions and capital investments.

The plan places **OSM as a key deliverable** for modular housing solutions to meet the Irish government's needs and thus sets out a key driver for adoption of 3D Modular solutions.

The public sector are set to provide **exemplar projects** to help build confidence and capacity in the OSM industry through public tenders for innovations that contribute to rapid delivery housing.

The 3d volumetric market is expected to account for **15%** of this market, yielding approx. **5,000** units annually.

Housing for All

3. OSM ADVANTAGES

BENEFITS OF OSM & MODULAR CONSTRCTION

WHY WOULD A CLIENT CONSIDER OSM VOLUMETRIC CONSTRUCTION SYSTEMS?

SPEED OF DELIVERY

REDUCED CARBON FOOTPRINT

PROGRAM CERTAINTY

SITE OPTIMISATION

OSM TARGET MARKET- 3D

OSM ACROSS CONSTRUCTION SECTORS

MMC CATEGORY DEFINITIONS

OFF SITE MANUFACTURING AND MODERN METHODS OF CONSTRUCTION

# CATEGORY DEFINITION		manufacturing primary structural ems)	Pre-ma (2D prin system	nufacturing mary structural s)	Pre-manufic componen primary str	ts (non-systemised
Additive manufacturin structural and non-st	ng (non	manufacturing structural assemblie o-assemblies)	Tradition Production Production	anal building produc labour reduction / tivity improvements	t Site proces reduction / assurance	ss led site labour / productivity / improvements
1	2	3	4	5	6	7
	₩	<u>^</u>	++			3
Off-site and near site pre-manufacturing					Site based process impre	ovement

CATEGORIES OF MMC	:	
Pre-Manufactured led approaches	Category 1	3D primary structural system, e.g. 3d volumetric modules
-	Category 2	2D primary structural systems, e.g. off site panelised systems for walls, floors and roofs.
-	Category 3	Non-systemised structural components (structural assemblies and sub assemblies), e.g. staircases, pre-fabricated pile caps & ring beams, pre-cast floor slabs, pre-fabricated roof trusses
	Category 4	Additive Manufacturing, e.g. 3d Printing concrete
-	Category 5	Non- structural assemblies and sub- assemblies, e.g. bathroom and utility pods, pre-hung door sets, M&E riser assemblies
Site Process led approaches	Category 6	Traditional building product led site labour reduction/ productivity improvements . E.g. brick slip panels, flexible pipework
	Category 7	Site process led labour reduction/ productivity improvements, e.g. exoskeletons, robots, drones, driverless cranes

4. OSM CHALLENGES

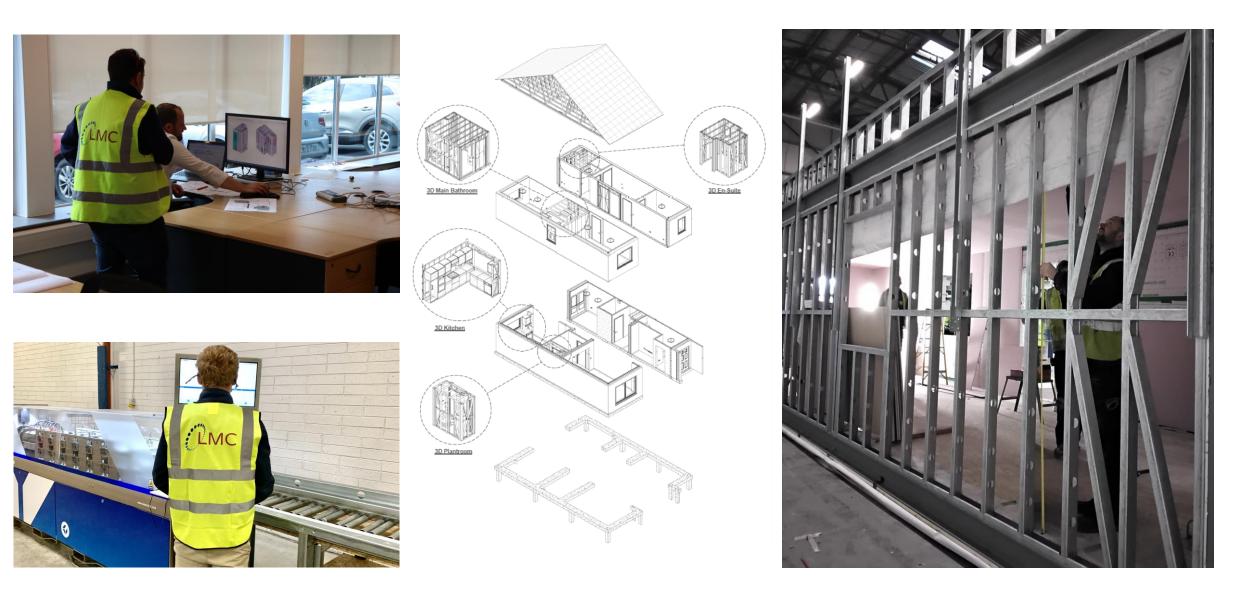
transport and installation.

OSM CHALLENGES

CHALLENGES TO THE ADOPTION OF OSM MODULAR CONSTRUCTION

FINANCIAL MODEL SUPPLY CHAIN EARLY DESIGN FREEZE Higher amount of complex decisions/ Earlier procurement, higher material costs Although there are benefits there **CULTURAL CHANGE** front loaded design. Approvals process are also risks associated with fewer upfront. Modular projects rely on faster It will take time and many can be complicated. purchases and short completion times, which suppliers. exemplar examples of OSM typically involve higher outlay sooner. before it is accepted. **CONTINUOUS PIPELINE** PRECISE PLANNING LOGISTICAL COMPLICATIONS **DESIGN RESTRICTIONS** For OSM to be financially viable and Precise scheduling, project team must be Risk with transporting 3d Modules Design must work with modular system achieve the potential economies of a ready to erect modules and make them with high PMV. Higher cost of parameters, e.g. size for transportation. The scale a continuous pipeline for the insurance to cover these units during

factory is essential.

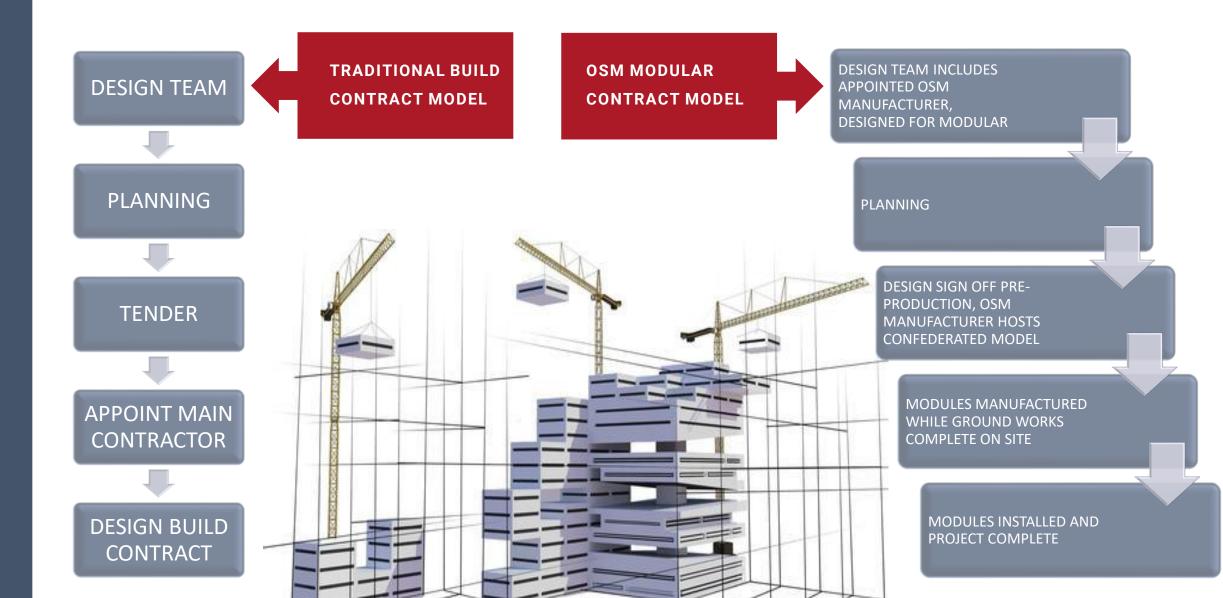

water-tight as they arrive to site to avoid cost and risk in temporary weather protections.

more unusual the shape of a design, the more challenging it would be to build with modules.

DESIGN FOR MANUFACTURE

A MINDSET SHIFT IN DESIGN APPROACH

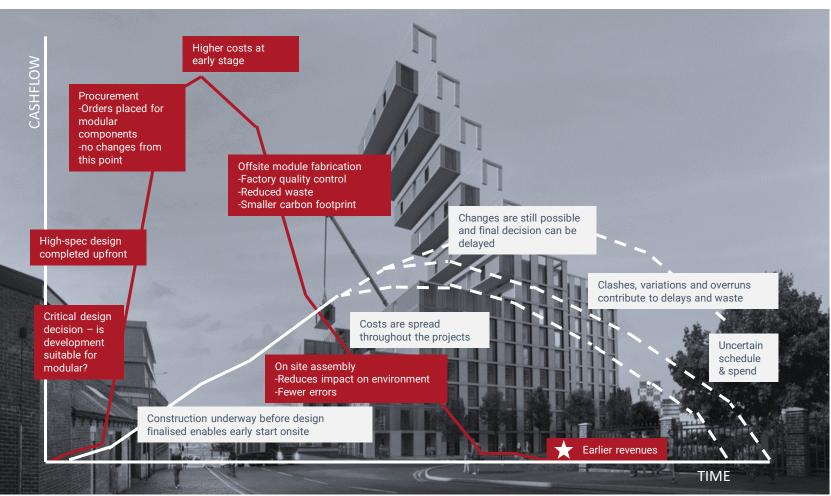
RISK COMPARISON



	Distra	Tuesdition of	DA alaslav
	Risks	Traditional	Modular
Time	Change in market conditions (best overall schedule duration	HIGH RISK	LOW RISK
	Skilled labour shortage	HIGH RISK	LOW RISK
	Impact of offsite material delays (i.e. modules, pods, etc)	MEDIUM RISK	HIGH RISK
(· L ·)	Weather at jobsite	MEDIUM RISK	LOW RISK
·	Onsite/offsite coordination	LOW RISK	HIGH RISK
	Schedule certainty	HIGH RISK	LOW RISK
Quality	Water intrusion damage	HIGH RISK	LOW RISK
	Skilled labour Shortages	HIGH RISK	LOW RISK
	Marketability (multiple unit types, unique floor plans, etc.)	LOW RISK	MEDIUM RISK
	Number of construction tasks (onsite coordination)	HIGH RISK	LOW RISK
	Different people performing same tasks (repetition)	MEDIUM RISK	LOW RISK
	Acoustic performance	MEDIUM RISK	LOW RISK
	Space Utilisation (avoiding double thickness walls and floors)	LOW RISK	HIGH RISK
Cost	Project viability (lowest total cost)	HIGH RISK	MEDIUM RISK
0000	Project buyout	MEDIUM RISK	LOW RISK
	Cost of losing operating revenue	HIGH RISK	LOW RISK
	Cost of financing (time to permanent loan)	HIGH RISK	LOW RISK
	Cost of plan B (if GC or modular company defaults)	LOW RISK	HIGH RISK
	Ability to obtain construction financing	LOW RISK	LOW RISK
	Cost of construction waste	MEDIUM RISK	LOW RISK

CONTRACT MODELS FOR OSM

NEW WAY OF DOING BUSINESS



COST MODEL FOR OSM

A NEW WAY OF DOING BUSINESS

CONSTRUCTION CASH FLOW TRADITIONAL VS OFFSITE

- High Front end cash flow
- Structured advance or deposit payments
- Vesting certs on materials and component parts
- Staged payments agreed upfront
- Insurance of vested modules/materials during storage and transport
 - during storage and transport
- Contractually clear on point of transfer
 - of ownership

