Design and Delivery in an Era of Machine Intelligence

Phil Bernstein FAIA RIBA LEED AP© Associate Dean + Professor Adjunct Yale School of Architecture

CITA Live | 22 September 2020

Education Expertise & Judgment Registration Autonomy Compensation Common Values

From Cuff, Dana Architecture: The Story of Practice

1943 - Ayn Rand

Evolution of Tools and Technologies

Drawing

CAD

BIM

Integrated Digital Delivery

2005 - Gehry

"The way I see it, the computer puts architects back in the driver's seat, because we control all that information."

Frank Gehry – Lecture at Yale University 3.24.05

Foundation Louis Vuitton, Gehry Partners 2014

Methodology

Performance Characteristics	Parameters				
Facade expression	Geometry, dimensions, material choice				
Structural performance	Unit performance, connection, system behavior				
Weather barrier, rain screen	Connections, gaskets				
Energy barrier	U-Value, thermal transmittance Sound transmission co-efficient				
Acoustic barrier					
Daylight controller	Glass transmissivity, transparency, shading performance				
System cost	Materials, labor, market conditions, installation sequence				
Embodied carbon	Material characteristics, delivery approach, manufacturing approach				
Construction sequence	Installation strategy				

Value 1.5% Precentage of construction cost not to exceed fixed amount 1.9% Fee per square foot 10.5% 0.8% Percentage of construction cost Other 20.4% 36.1% Hourly rate (with or without Stipulated sum (fixed fee) agreed maximum) 28.7% Professional fee plus eimbursable expenses Stage of work at Design Deroduct on Birl Build Do 6 ____ Information reliability Information resolution Time Extra-mural services 0 0 4 0 4 0 Furniture Data wrangler Analys designer Production Feasibility Close-out Occupancy Concen sigr (Facilities management) (Construction support) Expanded design services origination) Typical services 2 Architect as owner (Owner) (Developer) 3 Architect as builder Traditional "waterfall" phasing Expanded design services

2 Architect as owner

3 Architect as builder

Extra-mural services

National BIM Report 2019

The definitive industry update

BIM Adoption 2019

Contractors will increasingly insist on us using BIM 61% Contractors will increasingly insist on us using BIM 61% 63% 28% 46% UK user Ireland user UK non-user Ireland non-user

Percentage of respondents who agree with the following statements about adopting BIM

L																		Ĺ	
														design 0015 and	drugt-0016.ong				
desgr-0021 ang	design 0022 ang	deugo 0021 prg	deven 0024 pm	aray 6025 and					deugn 6030 ang	denge 6011.ang	ango 0002 ang			areas 6035 and	desgr-0006.ang	design 60177 grag		design OCCIT and	
design 0043.emg	areagen-0042 ang		design-0044.pmg	design (OdS prig	acian 0046 pro		design-0048.prd		acum 0050 pm		design 0052 prig	desper 0003.org	deuge 0054 prg		derign 6006.ong		shiph-0008.ong	despr.0558.org	
desarr-0061 ang	acum 0052 and COL SA COL SA COL SA			acuto coos pre	Angen COSE,pro	demain 0067 ang	derige OGS.ang	eeuge Oodaang			design 0072 pro	asser 6073 ang	design 0074 pro			design doll 2 and	design 40/28 jang	desen 2073.ong	
4				Ŀ		h		Ł	E.		E.	E.					L		

Generalitye design is the process of **defining high-level goals and constraints**. and then using th**e power of computation** to automaincally explore a wide design space and id**entify** the best design opports.

2017 -Susskind

"As we move to an internet society, then, we should ask whether there might be new ways of organizing professional work, new ways to produce and share practical expertise in society, new ways to solve the important problems that, traditionally, the professions alone have solved."

David Susskind in "The way we'll work tomorrow," RIBA Journal, July 2017

National BIM Report 2019

The definitive industry update

" (W)e are on the brink of a period of fundamental and irreversible change in the way that the expertise of specialists is made available in society. Technology will be the main driver of this change. And in the long run, we will neither need nor want professionals to work in the way that they did in the twentieth century and before."

PREDICTION BY COMPUTER

Measurement \rightarrow Simulation \rightarrow Prediction

- BUILDING SYSTEMS
- CONSTRUCTION CONTRACT
 ADMINISTRATION
- CONSTRUCTION DOCUMENTS
- DESIGN
- ENVIRONMENTAL
- LEGAL
- MATERIALS and METHODS
- OCCUPANT COMFORT
- PRE-DESIGN
- PRESERVATION

"Expecting an architect to design a safe structure is like expecting a chef to cook a safe meal: It is at once a high ethical requirement and a very low expectation...aesthetics may be the key to unlocking the real authority of architects, and therefore architecture, to shape society."

Victoria Beach in "Design Beyond Ethics" HPP 15 Chapter 1.3

A WORLD WITHOUT WOR

Technology, Automation, and How We Should Respond

The temptation is to say that because machines cannot reason like us, they will never exercise judgement; because they cannot think like us, they will never exercise creativity; because they cannot feel like us, they will never be empathetic. And all that may be right. But it fails to recognize that machines still might be able to carry out tasks that require empathy, judgement, or creativity when done by *a human being*—by doing them in some entirely other fashion. (page 73)

"If you are an architect practicing (wherever) you will be presumed to:

- Possess the required degree of learning, skills, and experience that is ordinarily possessed by similarly situated professionals in the community (that is, perform as well as other architects practicing in the...area);
- 2. Use reasonable and ordinary care and diligence in the exercise of your skill to accomplish your professional tasks; and
- 3. Use your best good professional judgment in performing your professional tasks.."

"The Architects' and Engineers' Standard of Care at http://constructionlawnc.com/2010/06/24/standard-of-care/

"Many people say, 'As an expert I use my judgement, but how can a computer system ever exercise judgement?'. We say that's asking the wrong question, the question you should ask is: '**To what problem is human judgement the solution?** Why is it that we need human beings to exercise judgement?'—that's the fundamental problem.

Our take on that is we exercise human judgement under conditions of uncertainty and we live in a world of uncertainty—the facts are often uncertain, the knowledge that's applicable is often uncertain—so we go to experts because they're the best people at handling that kind of uncertainty."

Richard Susskind in "Future of Professions," MEDIUM https://medium.com/workandlife/the-future-of-professions-5cd1eb8f6b4e

Tally ${}^{\scriptscriptstyle \mathrm{M}}$ pulls material quantities from the Revit model to create an accurate bill of goods.

© KT INNOVATIONS

Tally[™] can be used to compare design options.

Option 1 - Corrugated Shingle Cladding

Option 2 - Translucent Panel Cladding (Selected)

Results Per Life Cycle Stage, Itemized by CSI Division

© KT INNOVATIONS

Phillip G. Bernstein		Agency	Methodology	Value
archi practice Competency in the Era of Computation	Current State	Professional standards, defining "intent"	Iteration, intuition, fixed deliverables	Commodification, lowest first cost
ture design data				
	53 e			

phillip.bernstein@yale.edu

@Bernstein_Arch

Changing the way we work

TITLE: Design and Delivery in an Era of Machine Intelligence

FOCUS: As the AEC industry normalizes building information modeling, did it really make a change in our process, or improve our results? The pandemic has posed a series of existential questions about the role of designers and buildings for society at the same time that a next generation of technologies—machine learning and artificial intelligence—are beginning to peek over the horizon. This talk will speculate on how the informational foundation of BIM might point toward new realities of process and result.