

OFF SITE MANUFACTURING OVERVIEW

INTRODUCTION

- Off-Site Manufacturing (OSM) now developing at scale in UK/ US
- Increased use of BIM
- Speed of delivery, particularly for housing
- OSM re-emerging in recent years in RoI and NI, but still not at scale
- OSM in Ireland is typically component related with little modular at scale to date except for some M+E at construction stage
- Not without its problems and concerns

FINANCE MODEL AND RISK

- Traditional construction payment made for completed work on site (or vested materials)
- OSM finance model is different
 - Upfront investment manufacture, labour material
 - R+D to certify systems before manufacture
 - Earlier payment before OSM units delivered
 - Higher pre-planning and design costs
 - Front loaded payment risks for Client.
- Module supplier now responsible for timely delivery of units - critical for schedule
- Mitigation of risk
 - Early supply chain involvement / procurement
 - Collaboration and proper risk apportionment

QUALITY AND ASSURANCE

- Potential for higher finished construction quality
- Risks need to be understood by Insurers
 - Durability and maintenance assessments
 - Warranties
 - Build Offsite Property
 Assurance Scheme in UK
- Inspection by third party protocols needs to be more developed and effective.

EARLY DESIGN DECISIONS CRITICAL

- Traditional value engineering at procurement or construction stage no longer effective
- VE opportunities need to be assessed at early design stage
- New design management protocols
- Change management cannot take place after commencement of manufacture
- Experienced project planners, designers and manufacturers key to success

OSM ADVANTAGES

- Controlled manufacturing improved quality, conditions, efficiency, H+S
- Speed
 - Modules completed in parallel with early construction
 - Fast on-site erection (up to 60% faster)
 - Less on-site work construction personnel
 - Efficient for city centre sites
 - Big construction waste reductions and better recycling
 - Reduced snagging repetitive and less mistakes
 - Early decisions reduces potential on-site delays and cost overruns

POTENTIAL PROBLEMS, ISSUES AND CONCERNS

- Greater risk for client due to earlier payments.
- Insurance / pre-payment bonds.
- Risk sharing.
- Financial checks on suppliers.

- Greater risk for client due to earlier payments.
- Insurance / pre-payment bonds.
- Risk sharing.
- Financial checks on suppliers.

All decisions front-loaded.

- Requires client inputs that are early and dependable
 not always possible.
- Reduced ability for change in evolving environment such as health care.
- Scope of services agreements with Consultants need to reflect front loading.
- Construction programme reduces but preconstruction programme may increase.

- Greater risk for client due to earlier payments.
- Insurance / pre-payment bonds.
- Risk sharing.
- Financial checks on suppliers.

All decisions front-loaded.

- Requires client inputs that are early and dependable not always possible.
- Reduced ability for change in evolving environment such as health care.
- Scope of services agreements with Consultants need to reflect front loading.
- Construction programme reduces but preconstruction programme may increase.
- Design approaches informed more by technology.
- More standardisation can curtail explorations of alternative design solutions.
- Innovation may suffer as efficiency becomes the imperative. Bespoke solutions less attractive.
- Commoditisation of building requires adjusted responses in design.

- Greater risk for client due to earlier payments.
- Insurance / pre-payment bonds.
- Risk sharing.
- Financial checks on suppliers.

All decisions front-loaded.

- Requires client inputs that are early and dependable not always possible.
- Reduced ability for change in evolving environment such as health care.
- Scope of services agreements with Consultants need to reflect front loading.
- Construction programme reduces but preconstruction programme may increase.
- Design approaches informed more by technology.
- More standardisation can curtail explorations of alternative design solutions.
- Innovation may suffer as efficiency becomes the imperative. Bespoke solutions less attractive.
- Commoditisation of building requires adjusted responses in design.

Local employment impact.

- Especially relevant in developing countries.
- May dilute instrument of Government in stimulating economic activity due to centralised manufacture.
- Potential positive impact if facility is in regions where employment can be boosted.

Specialised v general skill sets.

- May limit access to employment for lower skilled workers.
- Skills shortages may impact delivery.

Specialised v general skill sets.

- May limit access to employment for lower skilled workers.
- Skills shortages may impact delivery.

Quality

- Errors made become imbedded in the project f not caught at pre-erection stage.
- Repairs may be more problematic to address e.g. pod from China develops fault after a number of years – how do you approach remedial work?
- How should quality control / monitoring be addressed?

May limit access to employment for lower skilled Specialised v general skill sets. workers. Skills shortages may impact delivery. Errors made become imbedded in the project f not Quality caught at pre-erection stage. Repairs may be more problematic to address – e.g. pod from China develops fault after a number of years – how do you approach remedial work? How should quality control / monitoring be addressed? Who owns the goods prior to delivery? **Contractual** Who bears the risk for damage during storage or transit?

How is post completion liability dealt with – both

Defects Liability Period and Latent Defects?

Specialised v general skill sets.	 May limit access to employment for lower skilled workers. Skills shortages may impact delivery.
Quality	 Errors made become imbedded in the project f not caught at pre-erection stage. Repairs may be more problematic to address – e.g. pod from China develops fault after a number of years – how do you approach remedial work? How should quality control / monitoring be addressed?
Contractual	 Who owns the goods prior to delivery? Who bears the risk for damage during storage or transit? How is post completion liability dealt with – both Defects Liability Period and Latent Defects?
BCAR and Regulatory.	 The Code of Practice may need to be expanded to deal with inspection of off-site construction. Until the first post SI9 case involving OSM goes through the system, we will not understand the liability attaching to inspection and certification. Construction Products Regulations will apply – will that limit markets?

Corona Virus.

- Does the pandemic permanently affect the way we think about construction activity – a reduction in close quarters work and social interaction on sites and in OSM factories?
- Combine 1.5m wide standard single module cassette glazing into 3m wide double units to achieve 2m separation.
- Design cladding panels greater than 2.5m width to achieve 2m separation.
- Maximise off-site prefabrication for all cladding and glazing components
- Maximise on-site areas remote from construction to prefabrication cladding and glazing prior to site installation
- Is risk transferred from site to manufacturing facility.

HOW DOES BIM SUPPORT OSM?

HOW DOES BIM SUPPORT OSM?

Greater precision in specifying material requirements

- Reduces over-ordering
- Decreases construction site waste
- Assists fabricators and contractors with 3D model of element positions
- Can accurately represent geometry, behaviour and properties of individual building components
- Facilitates component incorporation into standardised building elements or volumes
- Allows direct interfacing between designers, suppliers, manufacturers and users
- Helps avoid longer lead-in times, high costs and modification problems

BIM allows "construction data to be machine processable and components to be manufactured without human intervention" Eastman and Sacks

EXAMPLES

BRICKWORK ON PRECAST CONCRETE PANELS

- Dublin Landings Commercial Offices
- Capital Dock (OMP) Residential

UNITISED CLADDING AND GLAZING FACADES

- 35 Shelbourne Road Office Development
- Assembled in Ireland

UNITISED CLADDING AND GLAZING FACADES

- 76 Sir John Rogerson's Quay Office Development
- Assembled in Ireland

PERMANENT INSULATED SHUTTERING

- Castle Park School, Dalkey
- Italian system allowed for on-site modifications

VOLUMETRIC PREFABRICATION

- Holiday Inn Express in Trafford City
- Complete interior volumetric prefabrication
- Saved approximately £1 million in construction costs when compared to a traditional form of construction

Courtesy Chapman Taylor

IKEA, SKANSKA AND BOKLOK

- House as commodity product rather than project
- BoKlok has previously built 11,000 homes across Sweden, Finland, Denmark and Norway. It has been trying to break into the British market for a decade, but this could be its first venture in the UK, scheduled for the year 2021.
- BoKlok sets property prices so that buyers have money left to live on after they have paid their housing costs.
- An unproven idea in this regulatory and climatic environment

INDUSTRIAL PROJECT, DUBLIN

metres

- Modular M+E assembly
- Large industrial project
- Electrical installation
 - Battery racks
 - UPS
 - LV cabinets

12 metres

MECHANICAL VENTILATION HEAT RECOVERY (MVHR) PODS

76 Sir John Rogerson's Quay residential apartments

Residential bathroom pods

IRELAND - OSM

SOME EXAMPLES DESIGN

- Large scale industrial project
- Remote on-site construction
- 14.63 w x 8.0 h composite panels
- Minimum secondary steel
- Tracked roof mini crane and cherry picker for erection
- 5-man team 400 sq m / day

CASE STUDY

GE HEALTHCARE BIO PARK, CORK

Large prefabricated 1 and 2 storey 3,275 square metre pharmaceutical manufacturing modules within larger masterplan including traditionally constructed buildings including circulation administration, QC laboratories, warehousing and central utilities buildings

- KUBio is a prefabricated cGMP-compliant facility and process solution designed for the scalable and costefficient production of mAbs
- Prevalidated modular units and processing equipment are transported to selected site where they are assembled, and the resulting facility qualified, and can be ready-to-run within 14 to 18 months

- 4 Production Facilities KUBio's with a total area of 13,100 sq m
- Prefabricated modular units 4.5m x 9.6m x
 4m high, sized to suit ease of transportation
- Units supplied complete with all interior building finishes and service installations
- Prefabricated and pressure /integrity tested off-site at manufacturers premises
- Level 1- Process Laboratories with a footprint size 36m x 38.4m – Total 32 modules
- Level 2 Laboratory Support Staff Facilities and Plant Rooms with a footprint size 27m x 38.4m Total 32 modules

- Exterior finish composite metal cladding secret fixed to prefabricated modules and single ply membrane roof finish
- Designed for connection to central spine to connect to support buildings - total development 42,500 sq m

Programme (project currently on hold)

- Concept design commenced April 2016
- Planning lodged September 2016 and granted
 March 2017
- Tendered in packages over 7-month period from December 2016 – August 2017
- Construction programme
 - Enabling works 3 months
 - August October 2017
 - Main Construction 22 months
 - November 2017 September 2019

