


External Memory Solution For Large-Scale Point Cloud Data Processing

Neil Hyland & Dr. Shawn O’Keeffe
BIM & Scan Ltd.



Introduction & Overview

● BIM & Scan® Ltd.

● BIM & Scan AutoCorr™

● Cloud Service

● Adaptation/Optimisation

● Testing

● Results/Conclusion



Problem Domain

In AEC industries, how do we assure that 
what was built on-site, is what was designed?

What needs to be done to determine this? 
What tools can/are to be used?

How do we assure stakeholders that this is an 
objective fact?



Our Software (1)

BIM & Scan AutoCorr™ is a cloud-based 
software service that performs analyses 
between models (IFC BIMs) and point 
clouds (E57 scans), and reports 
correspondences between the real-world 
built environment and its virtual model 
counterpart.

Available from our website 
(bimandscan.com) for users to try.



Our Software (2)

Example results...



Software History (2017-2019)

● First version: command-line executable.
○ Local desktop software tool.
○ Used by developers/those knowledgeable.
○ Hard to install/deploy elsewhere

● Second version: cloud service.
○ Available across the Internet.
○ User-friendly.

● Third (newest) version: optimised cloud service.
○ Better backend.



Challenges In The Cloud

● Deployed on Microsoft® Azure, using Docker/Kubernetes as an orchestration system.

● Available performance (RAM, CPU size, HDD capacity) comes at a premium.

● “External” memory integrated into software to help alleviate costs.

● Did our improvements achieve what we wanted to achieve?



External Memory (1)

● Additional, optional layer between the software and RAM.

● (De)serialises data to-and-from hard disks instead of memory.

● Similar to OS functionality (e.g. paging, swapping).

● Used to handle datasets larger than what can fit in RAM.

● Applied currently to HPC, big data, distributed/cluster computing domains.

● We saw how it could help lower our memory footprint, and therefore cost.



External Memory (2)

● STXXL (“Standard Template Library for Extra-Large Datasets” | http://stxxl.org)

● An existing stable/mature C++ library.

● Provides data structures built on external memory.

● Attempts to maintain performance similar
to in-memory computation (best case scenario).

● Sequential streaming of data useful for converting
our algorithm.



Our Algorithm

● Samples point cloud/scan input to reduce size but keep 
same structure.

● Performs bulk ray-casting using point data and 
processes results into new dataset.

● Incurs high memory overhead when operating on 
medium-to-large inputs.

● Ray-casting best candidate to use with external 
memory.



System Requirements

Based on hardware/infrastructure used…

* theoretical upper bound after subtracting overhead for OS, management software, etc...

Software Execution RAM Cloud VM RAM Execution Capacity

In-Memory 8Gb 32Gb ~3 (*)

External Memory 2Gb 32Gb ~15 (*)



Testing

● Software deployment.
○ Local: command-line Docker container, unlimited RAM.
○ Cloud: standard user-submitted execution, fixed amount of RAM.

● Measured time taken, memory/RAM consumed.
○ Local: per-second snapshots of performance characteristics of container.
○ Cloud: timestamps of execution start/finish.



Results (1)

“Plant Room” dataset.

Size: ~4.5Gb



Results (2)

“Hotel” dataset.

Size: ~7.6Gb



Results (3)

“Office Floor” dataset.

Size: ~6.1Gb



Observations (1)

● Approx. double time taken for 
external memory version.

● 50-75% slower on average.

● However, huge reduction in 
memory overhead.

Perf. Timing LOCAL CLOUD

Plant Room 44.5% 41.1%

Hotel 51.6% 44.6%

Office Floor 23.8% 45.7%

Execution time of in-memory version as a percentage of 
external memory performance.



Observations (2)

Throughput (considering parallel execution):

T = C / D
(capacity divided by duration)

e.g. Plant Room dataset…

T
i
 = 3 / 392s => 0.0077 (exec. per sec.) => 0.462 (exec. per min.)

T
e
 = 15 / 954s => 0.0157 (exec. per sec.) => 0.942 (exec. per min.)



Conclusion

Despite longer execution times, overall performance of the cloud system is maintained 
thanks to parallel throughput increase.

Increased throughput also makes the most out of our current cloud infrastructure. More 
executions in a single VM means lower cost per execution.

Scaling costs is controlled in a similar way.



Thank You | Questions?


