

4th CitA BIM Gathering 26th September 2019, Galway, Ireland.

Jonathan Rogers

BSc. Arch Tech, MSc. aBIMM

BIM Specialist @ Kingspan Limited

jonathan.rogers@kingspan.com

"THE POST - OCCUPANCY DIGITAL TWIN"

A Quantitative Report on Data Standardisation and

Dynamic Building Performance Evaluation

for Irish Construction

Delivering **better outcomes**

4th CitA BIM Gathering 26th September 2019, Galway, Ireland.

Supervisor: Barry Kirwan

Research Area: Digital Twin Technologies

The aim of my research was to determine if...

Replacing existing information exchange processes with Digital Twin Technology can

- a) Improve building to operations information transfer
- b) Improve efficiency in the post-occupancy operational phase of BIM Level 2 projects in Ireland?

Research Objectives

Critical analyses of...

- Soft Landings Framework 2018 & RIBA Plan of Work 2013
- Comparison of actual & proposed building performance data
- BIM Level 2 information exchange requirements & deliverables

Methodology

Literature Review, Interview Questionnaire, Online Survey, Roadmap

Term has become popular over the past few years

Gartner Emerging Technology List: 2017-2020

What is a Digital Twin?

Developed by NASA in the 1960's as "Mirrored Systems"

Associated with BIM & IoT since 2010, New buzzword relating to BIM 2020?

"A virtual model of a process, product or service"

"Pairing of the virtual & physical worlds"

How do you define a Digital Twin?

"Real time digital representation of an object or system"

"Virtual representation of a physical object or asset across its life-cycle"

Digital Twin = Real-Time Monitoring & Analysis

Elements required for Digital Twin

- 1. Physical object
- 2. Virtual representation of object
- 3. Interconnecting network of sensors

"The Performance Twin"

Sensor data viewed in Dasher 360

- Bi-Directional Updating of Data
- Virtual and Physical (Mirrored)

Temperature (Degrees)

Timeline (Months)

Assets are delivered in compliance with BIM Level 2

Alignment with PAS 1192, ISO 19650

Is BIM classified as a Digital Twin?

One requirement of a Digital Twin is a physical asset

BIM enables the virtual representation of a physical asset

Requirement 1: Physical Asset

RIBA Plan of Work 2013

Information Exchanges (Data Drops)

- PDF: Drawings, reports, specifications
- Excel spreadsheets
- IFC: Interoperable file format

Static Information

- Does not represent current conditions
- DT requires Bi-Directional updating of data.

Static Information (Outdated)

Smoother transition period following building handover

3 Year POE phase following project handover

What are Soft Landings?

BPE to analyse building operational data

Outdated evaluation methods producing static information

Interview Results: Soft Landings

Requirement 2: Virtual Representation

The Gemini Principles

Centre of Digital Built Britain

- Published: December 2018
- Roadmap: May 2019

3 Categories, 9 Principles

National Digital Twin

Principle No. 5: Openness

- Interoperability (ISO 16739:2013)
- Classification (ISO 12006-2:2015)

THE GEMINI PRINCIPLES		
PURPOSE	TRUST	FUNCTION
1. Public Good	4. Security	7. Federation
2. Value Creation	5. Openness	8. Curation
3. Insight	6. Quality	9. Evolution

Classification

Uniclass 2015

Code: Group_Sub Group_Section

Example

Complex: CO_Gr_SG_Se

• Entities: EN Gr SG Se

Space: SL_Gr_SG_Se

Elements: EF_Gr_SG_Se

Systems: SS_Gr_SG_Se

Products: PR_Gr_SG_Se

Standardised Product Data

Product Data Templates

- International Definitions
- Performance Certificates
- International Standards
- Product Information

Standardised Data and Objects

- Project Information Model
- Asset Information Model
- Digital Twin

Common Language

Digital Data Dictionaries

A value is defined

• Example = U-Value

Different definitions

- Ireland = U-Value
- Europe = Thermal Transmittance

Common Language / Standard definition

Requirement 3: Interconnected Devices

Internet of Things

Industry 4.0

2020: 20 - 50 billion

connected devices

April 2019: World

Population = 7.7 billion

4 - 7 devices per person

Addressing the Performance Gap

Cognitive Environment

Static (BIM) + Dynamic (IoT) data

Preventative Maintenance

- Adapting and reacting to surroundings
- Continuous learning from previous tasks
- Predicting when elements require maintenance

Actual vs Proposed Performance Data

Real-time environmental conditions.

Data Visualisation

Autodesk Dasher 360

- Began in 2009 as a Research project by Autodesk
- Visualisation & analytical tools for building and IoT data
- In the context of Building Information Models (BIM)

Project Dasher

As-Built BIM

Building Data

210 King Street, Toronto

Autodesk Pier 9, San Fransisco

4th CitA BIM Gathering 26th September 2019, Galway, Ireland.

MX3D Smart Bridge, Holland

4th CitA BIM Gathering 26th September 2019, Galway, Ireland.

Theory into Practice: Kingspan Innovation Centre

4th CitA BIM Gathering 26th September 2019, Galway, Ireland.

Req. 3: IoT

IKON Dasher: Modelled Sensors

Sensor housing concept

IKON Sensor Arrangement Sensors displayed in Dasher 360 connect to the database and display in correct location

IKON Dasher: Data Display Modes

Data Visualization

Sensor Categories:

- 1. Humidity
- 2. Temperature
- 3. Motion
- 4. CO₂

Visualisations

- Day / Hour / Minute
- Surface Shading

Computational Design

"What is Generative Design?"

- Automated workflow
- Mass production
- Alternative options

Generative Design Process

- Generate Revit
- Evaluate Dynamo
- Evolve Refinery

Generative Design: Requirements

To create a Generative Design:

- Input
- Output
- Design Goals

HIGH SCORING id: 8_16 Uses to find the Describe OVERALL SCORE:6.2 DAYLIGHT: 3.0 LOW DISTRACTION: 5.2 ADJACENCY: 4.9 VIEWS TO OUTSIDE: 3.1 INTERCONNECTIVITY: 9.9 WORKSTYLE:

"What are Design Goals?"

Distraction, Views, Work Style, Adjacency

MaRS Project

Autodesk Toronto Interior Layout

4th CitA BIM Gathering 26th September 2019, Galway, Ireland.

Dynamic Building Performance Analysis

Current Building Analysis Methods

- LEED and BREEAM calculations
- Three-year re-certification period

Pre-Determined Design Goals

- Thermal comfort, Acoustics, CO₂
- Static Data = Design Goals
- Learn from previous projects

Dynamic Building Analysis

Addressing the Performance Gap

Structuring and Standardisation of Data

Bi-Directional Updating of Data

Conclusion and Recommendations

Learning and adapting Soft Landing's information for Generative Design Goals

Underperforming Assets – Blockchain / Smart Contracts

Thank you for your time

jrogersarchtech@gmail.com jonathan.rogers@kingspan.com